51,795 research outputs found

    Probing many-body localization in a disordered quantum magnet

    Get PDF
    Quantum states cohere and interfere. Quantum systems composed of many atoms arranged imperfectly rarely display these properties. Here we demonstrate an exception in a disordered quantum magnet that divides itself into nearly isolated subsystems. We probe these coherent clusters of spins by driving the system beyond its linear response regime at a single frequency and measuring the resulting "hole" in the overall linear spectral response. The Fano shape of the hole encodes the incoherent lifetime as well as coherent mixing of the localized excitations. For the disordered Ising magnet, LiHo0.045Y0.955F4\mathrm{LiHo_{0.045}Y_{0.955}F_4}, the quality factor QQ for spectral holes can be as high as 100,000. We tune the dynamics of the quantum degrees of freedom by sweeping the Fano mixing parameter qq through zero via the amplitude of the ac pump as well as a static external transverse field. The zero-crossing of qq is associated with a dissipationless response at the drive frequency, implying that the off-diagonal matrix element for the two-level system also undergoes a zero-crossing. The identification of localized two-level systems in a dense and disordered dipolar-coupled spin system represents a solid state implementation of many-body localization, pushing the search forward for qubits emerging from strongly-interacting, disordered, many-body systems.Comment: 22 pages, 6 figure

    Bounce-free spherical hydrodynamic implosion

    Full text link
    In a bounce-free spherical hydrodynamic implosion, the post-stagnation hot core plasma does not expand against the imploding flow. Such an implosion scheme has the advantage of improving the dwell time of the burning fuel, resulting in a higher fusion burn-up fraction. The existence of bounce-free spherical implosions is demonstrated by explicitly constructing a family of self-similar solutions to the spherically symmetric ideal hydrodynamic equations. When applied to a specific example of plasma liner driven magneto-inertial fusion, the bounce-free solution is found to produce at least a factor of four improvement in dwell time and fusion energy gain.Comment: accepted by Phys. Plasmas (Nov. 7, 2011); for Ref. 11, please see ftp://ftp.lanl.gov/public/kagan/liner_evolution.gi

    Phase Separation of Bismuth Ferrite into Magnetite under Voltage Stressing

    Full text link
    Micro-Raman studies show that under ~700 kV/cm of d.c. voltage stressing for a few seconds, thin-film bismuth ferrite BiFeO3 phase separates into magnetite Fe3O4. No evidence is found spectroscopically of hemite alpha-Fe2O3, maghemite gamma-Fe2O3, or of Bi2O3. This relates to the controversy regarding the magnitude of magnetization in BiFeO3.Comment: 9 pages and 2 figure

    Ephemeral active regions and coronal bright points: A solar maximum Mission 2 guest investigator study

    Get PDF
    A dominate association of coronal bright points (as seen in He wavelength 10830) was confirmed with the approach and subsequent disappearance of opposite polarity magnetic network. While coronal bright points do occur with ephemeral regions, this association is a factor of 2 to 4 less than with sites of disappearing magnetic flux. The intensity variations seen in He I wavelength 10830 are intermittent and often rapid, varying over the 3 minute time resolution of the data; their bright point counterparts in the C IV wavelength 1548 and 20 cm wavelength show similar, though not always coincident time variations. Ejecta are associated with about 1/3 of the dark points and are evident in the C IV and H alpha data. These results support the idea that the anti-correlation of X-ray bright points with the solar cycle can be explained by the correlation of these coronal emission structures with sites of cancelling flux, indicating that, in some cases, the process of magnetic flux removal results in the release of energy. That the intensity variations are rapid and variable suggests that this process works intermittently
    corecore